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 Abstract 

Numerical iterative methods are applied for the solution of two dimensional Elliptic partial 

differential equations such as Laplace’s and Poisson’s equations. These kinds of differential 

equations have specific applications models of physics and engineering. The distinct 

approximation of the two equations is founded upon the theory of finite difference. In this work, 

the approximation of five point’s scheme of finite difference method is used for the equations 

of Laplace and Poisson to get linear system of equations. The solution of these Dirichlet 

boundary is discussed by finite difference method. An elliptic PDE transforms the PDE into a 

system of algebraic equations whose coefficient matrix has a tri-diagonal block format, using 

the finite difference method. Numerical iterative methods such as Jacobi method and Gauss-

Seidel method are used to solve the resulting finite difference approximation with boundary 

conditions. 

 

Keywords: Iterative Solution, Elliptic partial differential equations, Boundary conditions 

 

Introduction  

The main aim of the research is finding limitation on numerical solution of Elliptic PDEs by using 

iterative methods. The majority of problems cannot be analytically solved, so it would be very useful 

to find good approximate solutions using numerical methods. Discretizing the elliptic Poisson 

equation with homogeneous Dirichlet boundary conditions by the finite difference method results in 

a system of linear equations with a large, sparse, highly structured system matrix. Idea of finite 

difference method is to discretize the partial differential equation by replacing partial derivatives with 

their approximation that is finite differences. The PDE is transformed using this approach into a series 

of linear, simultaneous equations. Which is written in the matrix equation and then the solution is 

obtained by solving the matrix equation or the solution can be obtained iteratively by solving 

simultaneous equations. 

 

Background  

Together with Dirichlet boundary conditions, numerical techniques were introduced to solve a two-

dimensional Poisson equation. Specifically Finite difference method and Finite element methods are 

used for the purpose of numerical solution. The implementation of the solutions is achieved using the 

worksheet or spreadsheet of Microsoft Office Excel. The numerical solutions obtained by these two 

approaches are often graphically compared to each other in two and three dimensions.(Patil and 

Prasad, 2013) 

 

Numerical techniques were introduced to solve a two-dimensional Laplace equation with Dirichlet 

boundary conditions. Using spreadsheets, they used finite difference and finite element techniques to 

solve two-dimensional Laplace equations with Dirichlet boundary conditions.(Mebrate, 2015) 



First Annual Research Session - 2020, Faculty of Applied Science, Vavuniya Campus, University of Jaffna, Sri Lanka 

 

2 

 

Classification of Partial Differential Equation 

The general form for linear second-order PDEs with two independent variables x, y is, 

 

 A𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑥 + 𝐸𝑢𝑦 + 𝐹𝑢 + 𝐺 = 0                                              (2.1) 

 
Where the coefficients A, B, C, D, E, F and G are constants or are functions of the independent 

variables 𝑥 and 𝑦.  

The classification is based on the discriminative sign 𝐵2 − 4𝐴𝐶  as follows. 

 

The PDEs are considered Elliptic if 𝐵2 − 4𝐴𝐶 < 0. 

 

Finite difference approximation of second-order partial derivatives 

 

𝑢𝑥𝑥(𝑥𝑖 , 𝑦𝑗) =
𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1

ℎ2                                                           (2.2) 

𝑢𝑦𝑦(𝑥𝑖 , 𝑦𝑗) =  
𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1

𝑚2                                                                                       (2.3) 

 
Difference Schemes for the Elliptic PDE’s 

                   
Defined over Ω = {(𝑥, 𝑦)|0 < 𝑥, 𝑦 < 1}  respectively with Dirichlet boundary conditions 

 

                                       𝑢(𝑥, 𝑦) = 𝑔(𝑥, 𝑦), for all (𝑥, 𝑦) 𝜖  𝜕Ω                                          (2.4) 

 

The finite difference approximation of the equation of Laplace’s and Poisson’s at the point 𝑖, 𝑗  has 

the following form. 

 

If we consider distance  ℎ = 𝑚, 

 

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗 = 0                                                               (2.5) 

and 

𝑢𝑖+1,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗−1 − 4𝑢𝑖,𝑗 = ℎ2𝑓𝑖𝑗                                        (2.6) 

 
The five-point finite difference approximation for the equation of Laplace’s and Poisson’s is called 

equations (2.5) and (2.6) respectively. 

 

Equation (2.5) and (2.6) are assembled into a linear system of equations. 
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If the various equations are taken in the order of the point, the coefficient matrix A is 

 

 

                               B     C       0 

 

 A=      C      B      C 

 

                               0      C      B 

 
Where 

 

         -4  1  .   .   .   .   .   0                           1  0   .  .   .   .   .   0 

          1 -4 1   .   .            .                           0  1  0                  . 

          .   1-4  1                .                               0  1  0              . 

B =    .       1                    .        and  C =    .                        .   . 

        .         .                .                        .    .                    . 
                                    1                    .                        1 0 

          .                          1-4                         .     0  .              0 1  

 

 

 

 

 

Methodology  

To solve linear algebraic system 

𝐴𝑢 = 𝑏,                                                          (3.1) 

 

Obtained from the discretization of an Elliptic partial differential equation, where A is large definite 

𝑛 × 𝑛 matrix that is sparse and typically positive.  

 

Consider the splitting 

    𝐴 = 𝑀 − 𝑁                                              (3.2) 

We may write the existing system equation (3.1) is, 

 

   (𝑀 − 𝑁)𝑢 = 𝑏 
                 

The iterative form is 

   𝑀𝑢(𝑘+1) = 𝑁𝑢(𝑘) + 𝑏                     (3.3) 

 

Which is equivalently as  

   𝑢(𝑘+1) = (𝑀−1𝑁)𝑢(𝑘) + 𝑀−1𝑏                                (3.4) 

 

3.1 Jacobi and Gauss-Seidel Method 

Consider a linear system 𝐴𝑥 = 𝑏, the equation (3.1) can be written in the form of 

 

   (𝐷 − 𝐿 − 𝑈)𝑢 = 𝑏                     (3.5) 

  𝑢 = 𝐷−1(𝐿 + 𝑈)𝑢 + 𝐷−1𝑏                                 (3.6) 

 

And consider the iteration 



First Annual Research Session - 2020, Faculty of Applied Science, Vavuniya Campus, University of Jaffna, Sri Lanka 

 

4 

 

   𝑢(𝑘+1) = 𝐷−1(𝐿 + 𝑈)𝑢(𝑘) + 𝐷−1𝑏                               (3.7) 

 

If the equations (3.6) or (3.7) are used to solve the finite difference equation method for the Laplace’s 

and Poisson’s equation, we obtain the formula of the Jacobi iteration. 

  

 𝑢𝑖,𝑗
(𝑘+1)

=
1

4
[𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
]                                                        (3.8) 

and 

  𝑢𝑖,𝑗
(𝑘+1)

=
1

4
[𝑢𝑖−1,𝑗

(𝑘)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗−1

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
− ℎ2𝑓𝑖𝑗]                                   (3.9) 

 

consecutively. Solution updates at (𝑖, 𝑗) are measured at their four adjacent points as a weighted 

average of solutions.  

 

Matrix form of Gauss-Seidel method is 

 

  (𝐷 − 𝐿)𝑢(𝑘+1) = 𝑈𝑢(𝑘) + 𝑏                   (3.10) 

or 

  𝑢(𝑘+1) = (𝐷 − 𝐿)−1𝑈𝑢(𝑘) + (𝐷 − 𝐿)−1𝑏               (3.11) 

 
If the equations (3.11) are used to resolve the scheme of finite difference equations for the equation 

of Laplace’s and Poisson’s, we obtain 

 

  𝑢𝑖,𝑗
(𝑘+1)

=
1

4
[𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
]                                         (3.12) 

and 

  𝑢𝑖,𝑗
(𝑘+1)

=
1

4
[𝑢𝑖−1,𝑗

(𝑘+1)
+ 𝑢𝑖,𝑗−1

(𝑘+1)
+ 𝑢𝑖+1,𝑗

(𝑘)
+ 𝑢𝑖,𝑗+1

(𝑘)
− ℎ2𝑓𝑖𝑗]                                    (3.13) 

 

 

Results and Discussion 

Problem 1 

Laplace’s equation in two dimension 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0   𝑆 = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 1,0 ≤ 𝑦 ≤ 1}  in the unit 

square with boundary condition 𝑢(0, 𝑦) = 50, 𝑢(𝑥, 1) = 100, 𝑢(𝑥, 0) = 300, 𝑢(1, 𝑦) = 200 

 

Problem 2 

Consider the Poisson’s equation, 

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −2     ,   𝑆 = {(𝑥, 𝑦)|0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑦 ≤ 1}  

From the five point difference discretization, the generated linear scheme of the above model 

problems is resolved. 

According to the fixed iterative vector, the iterative algorithm of the above methods with different 

values of step-size values ℎ =
1

10
, ℎ =

1

20
, ℎ =

1

40
  has been computed numerically. 

These illustration show that iterative approach of Gauss Seidel requires less iteration than the 

techniques of Jacobi. 

Approximate solutions of to ℎ =
1

40
   problems 1 and 2 are shown in Figures (4.1), (4.2) and Figures 

(4.3), (4.4) respectively. 
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Figure 4.1: Surface plot of potential distribution through Jacobi Iteration Method,  

For problem 1, h = 1/40  

 

 
Figure 4.2: Surface plot of potential distribution through Gauss-Seidel Iteration Method,  

For problem 1, h = 1/40   
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Figure 4.3: Surface plot of potential distribution through Jacobi Iteration Method,  

For problem 2, h = 1/40  

 

 
Figure 4.4: Surface plot of potential distribution through Gauss-Seidel Iteration Method for h =

1/40    for problem 2 
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Table 4.1: Total number of iterations with different values of  h =

1

10
, h =

1

20
 , h =

1

40
  for Jacobi 

and Gauss Seidel methods problem 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.2: Total number of iterations with different values of  h =

1

10
, h =

1

20
 , h =

1

40
  for Jacobi 

and Gauss Seidel methods problem 2 

 

 
Conclusion  

In order to compare the efficacy of the simple iterative methods to explore the limitations on 

numerical solutions, two practical problems were solved for different step-sizes h. This algorithm is 

more user friendly to obtain approximate solutions of elliptic Pde’s. Having better convergece 

iterative solution by Gauss-Seidel method and the error is occuring due to the elimination of order of 

the step-sizes.We analysed the model problems with several step-sizes with the help of boundary 

conditions. 

 

 

h 

Jacobi Gauss-seidel 

 

Number of iteration 

 

Number of iteration 

 

1/10 

 

222 

 

119 

 

1/20 

 

775 

 

416 

 

1/40 

 

2640 

 

1433 

 

 

h 

Jacobi Gauss-seidel 

Number of 

iteration 

Number of 

iteration 

 

1/10 

 

261 

 

119 

 

1/20 

 

1147 

 

416 

 

1/40 

 

5030 

 

1433 
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